The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma.

نویسندگان

  • Lili Li
  • Qian Tao
  • Hongchuan Jin
  • Andrew van Hasselt
  • Fan Fong Poon
  • Xian Wang
  • Mu-Sheng Zeng
  • Wei-Hua Jia
  • Yi-Xin Zeng
  • Anthony T C Chan
  • Ya Cao
چکیده

PURPOSE Nasopharyngeal carcinoma is prevalent in southern China and Southeast Asia, with distinct geographic and ethnic distribution. One candidate susceptibility locus has been identified at 4p11-14, with the associated candidate gene(s) not identified yet. This study investigated the role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in nasopharyngeal carcinoma pathogenesis. EXPERIMENTAL DESIGN UCHL1 expression and methylation were examined in nasopharyngeal carcinoma. Furthermore, the mechanism of its tumor-suppressive function was elucidated in nasopharyngeal carcinoma cells. RESULTS Through genomewide expression profiling, we identified UCHL1, a 4p14 gene normally expressed in normal upper respiratory tract tissues, being silenced in all nasopharyngeal carcinoma cell lines. Its silencing is mediated by CpG methylation because UCHL1 promoter methylation was detected in all silenced cell lines, and pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. UCHL1 methylation was also frequently detected in primary tumors but only weakly detected in few normal nasopharyngeal tissues, indicating that the methylation-mediated silencing of UCHL1 is important in nasopharyngeal carcinoma pathogenesis. Ectopic UCHL1 expression dramatically inhibited the growth of nasopharyngeal carcinoma cells through promoting tumor cell apoptosis. We further found that UCHL1 formed a complex with p53/p14(ARF)/Mdm2 p53 binding protein homolog (mouse), MDM2 and activated the p53 signaling pathway. UCHL1 expression extended p53 and p14(ARF) protein half-life and shortened MDM2 protein half-life. CONCLUSIONS These results indicate that UCHL1 could deubiquitinate p53 and p14(ARF) and ubiquitinate MDM2 for p53 stabilization to promote p53 signaling, thus involved in nasopharyngeal carcinoma pathogenesis, whereas it is frequently silenced in this tumor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prevalence of P53 Mutations in Laryngeal Cancer in Kerman

Background &Aims: Laryngeal cancer is the second common cancer of respiratory tract, following the lung cancer. Carcinogenesis is a complex multistage process; molecular genetics has provided the evidence that activation of proto-oncogene and loss or inactivation of tumor suppressor genes (TSG) are involved in a large number of malignancies. One of the earliest significant tumor suppressor gene...

متن کامل

MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.

MDM2 is a RING domain ubiquitin E3 ligase and a major regulator of the p53 tumor suppressor. MDM2 binds to p53, inactivates p53 transcription function, inhibits p53 acetylation, and promotes p53 degradation. Here, we present evidence that MDM2 interacts with the nuclear corepressor KAP1. The binding is mediated by the N-terminal coiled-coil domain of KAP1 and the central acidic domain of MDM2. ...

متن کامل

The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer

BACKGROUND Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumo...

متن کامل

The ARF tumor suppressor can promote the progression of some tumors.

p14/p19ARF (ARF) is a tumor suppressor gene that is frequently mutated in human cancer. ARF has multiple tumor suppressor functions, some of which are mediated by signaling to p53. Surprisingly, a significant fraction of human tumors retain persistently high levels of ARF, suggesting that ARF may possess a prosurvival function. We show that ARF protein is markedly up-regulated in cells exposed ...

متن کامل

Mutations of p53 Gene in Skin Cancers: a Case Control Study

Background: The most frequently mutated tumor suppressor gene found in human cancer is p53. In a normal situation, p53 is activated upon the induction of DNA damage to either arrest the cell cycle or to induce apoptosis. However, when mutated, p53 is no longer able to properly accomplish these functions. The aim of this study was to investigate the expression of p53 gene in cases of skin cancer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2010